这个名字说出来就解释的差不多了。

    神经学是医学中的重要分支学科,神经信号传输是医学的基础研究,但其重要性和影响力,甚至可以说超越了医学。

    同时,神经信号传输的解析,也被认为是人类短期内无法攻克的医学难题之一,其复杂性和难度,甚至能和大脑解析等同。

    “如果能破解神经信号传输的奥秘,人类对于自身就会有跨越性的了解。”

    “那会是医学的革-命性进步,科学的革-命性进步。”

    “它可以轻松改变世界……”

    这是世界著名医学专家本-摩尔登的原话。

    近百年来,科学界一直试图理解神经冲动,也就是神经信号传输的方式。

    比如,当踩到了一枚图钉,到大脑接收到疼痛的信号,只需要不到一秒的时间,信号沿着神经纤维传输的速度大概是每秒三十米。

    六十年前,神经传输的研究者掌握了测量细胞膜内外电位差的技术,并发现信号沿神经传导经过电极时,膜电位会在几毫秒内发生急剧变化。

    两位英国科学家,艾伦-霍奇金和安德鲁-赫胥黎发现,神经元兴奋出现时,钠离子从细胞膜外涌入细胞膜内,然后,钾离子又从细胞膜内涌向细胞膜外,使膜电位恢复正常。

    他们提出的Hodgkin-Huxley模型成为了神经科学的奠基石,他们也以此获得了诺贝尔奖。

    艾伦-霍奇金和安德鲁-赫胥黎的成功,似乎代表人类破解了神经信号传输的方式,可实际上,神经传输的复杂性远远超出Hodgkin-Huxley模型范围。

    比如,触觉、视觉或者是其他感知,依靠的都是神经信号传输。

    如果只是单一的膜电位变化,肯定无法让人类拥有如此多的感知,神经信号传输方式,信号传输与大脑获取、分析信息的方式,都是人类远远未攻破的难题。

    近六十年来,有很多人质疑过艾伦-霍奇金和安德鲁-赫胥黎的理论结果,又或是希望对神经信号传输方式进行补充。

    比如,神经生物学家田崎一二,就是Hodgkin-Huxley模型的质疑者,他以发现动作电位在郎飞氏结上的跳跃传导而闻名于神经科学界,并在四十年年做了一个挑战传统的实验:解剖螃蟹的腿,将一束神经暴露在外,然后利用显微镜小心翼翼地在上面放置了一小块反光的铂片,接着用一束激光照射铂片,通过测量激光的反射角度,能检测到当动作电位通过时,神经束的宽度是否会发生微小改变。

    他和他当时的博士后研究员岩佐邦彦进行了上百次测量。

    一周后,数据清晰地表明,当动作电位通过时,神经束会略微变宽再变窄,整个过程仅仅数毫秒。

    虽然形变幅度很小,细胞膜表面只会上升约七纳米,但这个现象和通过的电信号的节奏完全一致,证实了田崎多年来的猜测--

    霍奇金和赫胥黎所提出的理论不一定是对的。

    田崎一二认为,“神经信号远不只是一个电信号,它同样也是一个机械信号。假如只用电极测量神经细胞,一定会错过很多重要信息。”

    田崎一二活到了九十八岁,但他的研究也并没有其他进展,医学界好多人认为,他的发现不是神经信号的本质,只是神经电信号的副产物。